Articles

Synthesis of S-Linked Thiooligosaccharide Analogues of Nodulation Factors. 2.¹ Synthesis of an Intermediate **Thiotrisaccharide**

France-Isabelle Auzanneau,*,[†] Monia Mialon,[†] Danielle Promé,[‡] Jean-Claude Promé,[‡] and Jacques Gelas[†]

École Nationale Supérieure de Chimie de Clermont-Ferrand, BP 187, F-63174 Aubiere, France, and Institut de Pharmacologie et Biologie Structurale, Spectrométrie de Masse et Signaux Biologiques, 205 route de Narbonne, F-31077 Toulouse, France

Received April 20, 1998

An S-linked thiotrisaccharide analogue of chitin that carries different N-protecting groups at the reducing and nonreducing end glucosamine residues was prepared as an intermediate for the synthesis of thioanalogues of nodulation factors. 1,6-Anhydro-2-azido-3-O-benzoyl-2-deoxy- β -Dglucopyranose (3) was prepared either through the nucleophilic displacement of the 4-triflate galacto analogue 1 with potassium chloroacetate or via the selective acylation of the analogous gluco diol 4. Condensation of 3 with the *N*-phthalimido trichloroacetimidate 9 led to the disaccharide 10, which was converted in four steps to the glucosyl bromide 15. Nucleophilic displacement of the anomeric bromide by a 4-thiolate derivative of glucosamine (16) bearing a trichloroethoxycarbamate at C-2 was performed in anhydrous oxygen-free THF and led to the desired thiotrisaccharide precursor of thioanalogues of nodulation factors. Alternatively, the disaccharide 10 was prepared by regioselective glycosylation of the 1,6-anhydro diol 4 followed by benzoylation of the remaining free hydroxyl group.

Introduction

The infection of leguminous plants with soil bacteria of the genera Rhizobium, Bradyrhizobium, and Azorhizo*bium* was shown² to allow the plant to use atmospheric nitrogen previously fixed and metabolized into ammonia by the bacteria. At an early stage of the host-specific infection, the bacteria produces extracellular signaling molecules called nodulation factors (Nod factors) which induce deformations and nodule organogenesis on the plant roots.³ Nod factors were shown⁴ to be in all cases lipooligosaccharides constituted of a tetra- (ABCD) or pentasaccharidic (ABCDE) backbone of chitin variably substituted as represented in Figure 1. Even though only very small concentrations $(10^{-6} - 10^{-12} \text{ mol } L^{-1})$ of natural Nod factors are required to initiate nodulation, their activity is limited by the action of chitinases⁵ that cleave the oligosaccharides at the glycosidic bond linking units

B and C. Therefore, we have developed a synthetic strategy to prepare thioanalogues of Nod factors in which a sulfur atom replaces the oxygen atom of the interglycosidic bond B-C. These analogues, which should be resistant⁶ to the action of glycosidases, will be used to investigate the structure/activity relationship of Nod factors. We have reported¹ that both the nucleophilic displacement of a 4-triflate 1,6-anhydro derivative of galactosamine by an anomeric thiolate and the basecatalyzed glycosylation of a 4-thiol derivative of glucosamine with an anomeric bromide led efficiently to thiodisaccharide derivatives of chitin. We report here the application of the later strategy to the preparation of an intermediate protected thiotrisaccharide.

Results and Discussion

Nucleophilic displacement of the triflate group in the 1,6-anhydro derivative 1 with sodium chloroacetate gave (Scheme 1) the gluco analogue 2 (50%), which was subsequently deprotected at C-4 with thiourea to give the glycosyl acceptor **3** in 87% yield. In view of the poor yield obtained for the preparation of the chloroacetate **2** from the triflate 1, the synthesis of 3 was also attempted starting from the known⁷ 1,6-anhydro diol **4**. Selective chloroacetylation of diol 4 with 1.4 equiv of chloroacetyl chloride at -18 °C gave (Scheme 2) the dichloroacetate

^{*} To whom correspondence should be addressed. Tel: 33-4-73-40-71-34. Fax: 33-4-73-40-70-95. E-mail: fauzann@chimtp.univ-bpclermont.fr.

École Nationale Supérieure de Chimie de Clermont-Ferrand.

[‡] Institut de Pharmacologie et Biologie Structurale, Spectrométrie de Masse et Signaux Biologiques.

⁽¹⁾ Part 1: Auzanneau, F.-I.; Bennis, K.; Fanton, E.; Promé, D.; Defaye, J.; Gelas, J. J. Chem. Soc., Perkin Trans. I, in press.
(2) (a) Van Rhin, P.; Venderleyden, J. Microbiol. Rev. 1995, 59, 124.
(b) Truchet, G.; Roche, P.; Lerouge, P.; Vasse, J.; Camut, S.; de Billy, F.; Promé, J.-C.; Dénarié, J. Nature 1991, 351, 670.

⁽³⁾ Vijn, I.; das Neves, L.; van Kammen, A.; Franssen, H.; Bisseling, T. Science **1993**, 260, 1764.

⁽⁴⁾ For a recent review see: Promé, J.-C.; Demont, N. In *Plant-Microbe Interactions*, Stacey, G. Ed.; Chapman: London, **1996**; p 272.
(5) Staehelin, C.; Schultze, M.; Kondorosi, E.; Mellor, R. B.; Boller, T.; Kondorosi, A. *Plant J.* **1994**, *5*, 319.

⁽⁶⁾ Defaye, J.; Gelas, J. In Studies in Natural Products Chemistry, Atta-ur-Rhaman, Ed.; Elsevier Science: Amsterdam, 1991; Vol. 8, p 315.

⁽⁷⁾ Tailler, D.; Jacquinet, J.-C.; Noirot, A.-M.; Beau, J.-M. J. Chem. Soc., Perkin Trans. 1 1992, 3163.

Figure 1. Schematic representation of natural Nod factors.⁴

^a Legend: (a) ClAcO⁻, Na⁺-DMF, 50 °C; (b) S=C(NH₂)₂.

5 (7%), the chloroacetates **6** (43%) and **7** (12%), and the unreacted starting diol **4** (12%). The same reaction using 1.2 equiv of chloroacetyl chloride and followed by in situ benzoylation of the crude mixture gave a mixture of dibenzoylated and monochloroacetylated derivatives which were not separated. After workup, the crude acylation mixture was treated with thiourea and the dibenzoate **8** (15%) was separated from the desired alcohol **3**, which was obtained in 48% yield from the diol **4**. In turn, glycosylation of the acceptor **3** with the known⁸ trichloroacetimidate **9** under catalysis with trimethylsilyl trifluoromethanesulfonate (TMSOTf) gave (Scheme 3) the disaccharide **10**, which was obtained in 90% yield (43% overall yield from the diol **4**).

The observed higher reactivity of the C-4 hydroxyl group in diol 4 prompted us to attempt the selective glycosylation of this diol by the trichloroacetimidate 9 under catalysis with TMSOTf (Scheme 4). In all the reactions, both the disaccharide 11 and the trisaccharide 12 were isolated (Table 1). The structure of disaccharide 11 and thus the selectivity of the glycosylation were confirmed by comparison of the ¹H NMR spectrum of the corresponding benzoylated disaccharide with an authentic sample of **10** that had been prepared from **3** and also by the analysis of the COSY spectrum of the disaccharide 14. The reaction conditions were optimized and, as shown in Table 1, best results were obtained when the reaction was carried out at a high dilution of acceptor 4 in CH_2Cl_2 (entries 2–4). Lower temperatures limited the degradation of the glycosyl donor 9, but precipitation of the starting diol from the reaction mixture at these lower temperatures also resulted in formation of a higher percentage of the undesired trisaccharide 12. The best yields of the desired disaccharide 11 (\sim 50%) were obtained by dropwise addition of 9 at room temperature (entries 3 and 4). The ¹H NMR spectrum of disaccharide **11** (Figure 2A) showed unusual coupling constants between H-2B and H-3B (5 Hz) and between H-3B and H-4**B** (4.5 Hz). In addition, these coupling constants,

which were close to 0 Hz in the analogous 4-chloroacetylated monosaccharide **6**, disappeared upon benzoylation of the free hydroxyl group to give the disaccharide **10**. Thus, we postulate that a hydrogen bond between HO-**3B** and O-5**A** is responsible for the conformational change observed in disaccharide **11**. Benzoylation of the disaccharide **11** gave the disaccharide **10** (90%), which was thus obtained in two steps from diol **4** with a 42% overall yield.

The azido group in disaccharide **10** was reduced (H₂– Pd/C), and the intermediate amino disaccharide was treated with trichloroethyl chloroformate to give the carbamate **13** (60%, Scheme 5). Opening of the anhydro ring in **13** (CF₃CO₂H–Ac₂O) gave the anomeric mixture of the diacetate **14** which was converted to the bromide **15** that was obtained anomerically pure as the α -anomer.

Under the reaction conditions described previously,¹ the bromide 15 was allowed to react with the thiolate 16 in anhydrous oxygen-free THF and gave the thiotrisaccharide 17 in 49% yield (Scheme 6). Contamination of the trisaccharide with less than 10% (molar) of a monosaccharidic impurity was assessed by ¹H NMR and resulted in considerable loss of product upon repeated silica gel chromatography. The trisaccharide 17, which was obtained pure by gel permeation chromatography (30%), is the first thiotrisaccharide derivative of chitin to be described that carries different protecting groups at C-2 of the two terminal glucosamine residues. Thus, it can be used in chain extension reactions at the reducing end and can also be selectively deprotected and N-acylated at its nonreducing end, providing the first access to thio Nod factors.

Experimental Section

General Methods. NMR spectra were recorded at 400.13 MHz (¹H) and 100.6 MHz (¹³C). First-order chemical shifts and coupling constants were obtained from one-dimensional spectra, and assignments of proton resonances were based on COSY experiments. Mass spectra were obtained by liquid secondary ionization. TLC was performed on precoated aluminum plates with Kieselgel silica gel 60 F_{254} (E. Merck) and detected with UV light and/or charred with a 10% H_2SO_4 solution in EtOH. Compounds were purified by flash⁹ or atmospheric pressure chromatography with silica gel 60 (230–400 mesh or 70–120 mesh, respectively). Solvents were distilled and dried according to standard procedures,¹⁰ and when necessary they were obtained oxygen-free by purging with argon. Organic solutions were dried on Na₂SO₄ and concentrated below 40 °C under reduced pressure. When

⁽⁸⁾ Auzanneau, F.-I.; Forooghian, F.; Pinto, B. M. Carbohydr. Res. 1996, 291, 21.

⁽⁹⁾ Bundle, D. R.; Iversen, T.; Josephson, S. *Am. Lab.* **1980**, *12*, 93. (10) Perrin, D. D.; Armarego; W. L. F. *Purification of Laboratory Chemicals*, 3rd ed.; Pergamon Press: London, 1988.

^{*a*} Legend: (a) ClCH₂COCl, -18 °C; (b) BzCl; (c) S=C(NH₂)₂.

necessary for analytical purposes, permeation gel chromatography of protected compounds was performed using a Sephadex LH20 column (1.5 \times 100 cm) eluted with 1:1 CHCl₃– MeOH. Elemental analyses were performed at the "Service Central d'Analyse du CNRS, Lyon" or alternatively at the "Service d'Analyse de la Faculté de Pharmacie, Châtenay-Malabry".

1,6-Anhydro-2-azido-3-*O***-benzoyl-4***-O***-chloroacetyl-2deoxy-\beta-D-glucopyranose (2).** A mixture of 1,6-anhydro-2azido-3-*O*-benzoyl-2-deoxy-4-*O*-trifluoromethanesulfonyl- β -Dgalactopyranose¹ (1;206 mg, 0.49 mmol) and sodium chloroacetate (220 mg, 1.9 mmol) in DMF (20 mL) was stirred at room temperature for 3 h. The solution was diluted with CH₂Cl₂ (30 mL) and washed successively with H₂O (20 mL) and saturated aqueous NaCl (20 mL). The washings were reextracted with CH₂Cl₂ (2 × 20 mL), and the combined organic phases were dried and concentrated. Flash chromatography of the residue (8:2 cyclohexanes–EtOAc) gave the chloroacetate **2** (90 mg, 50%) as a colorless glass. $[\alpha]^{20}_{D} = +13$ (c 1.1, CH₂Cl₂). ¹H NMR: δ 3.38 (bs, 1 H, H-2), 3.95 (dd, 1 H, $J_{6.6} = 8$ Hz, $J_{6.5} = 5.5$ Hz, H-6), 4.25 (s, 2 H, ClCH₂CO), 4.30 (d, 1 H, H-6'), 4.78 (bd, 1 H, H-5), 4.92 (bs, 1 H, H-4), 5.23 (m, 1 H, H-3) 5.63 (bs, 1 H, H-1), 7.50, 7.70, 8.05 (3 m, 5 H, aromatics). Anal. Calcd for C₁₄H₁₂N₃F₃O₇S: C, 49.0; H, 3.8; N, 11.4. Found: C, 48.9; H, 3.9; N, 11.2.

1,6-Anhydro-2-azido-3-*O*-benzoyl-2-deoxy- β -D-glucopyranose (3) and 1,6-Anhydro-2-azido-3,4-di-*O*-benzoyl-2deoxy- β -D-glucopyranose (8). Method A. Thiourea (135 mg, 1.8 mmol) was added to a solution of the chloroacetate 2 (595 mg, 1.6 mmol) in a mixture of pyridine (40 mL) and EtOH (8 mL). The reaction mixture was stirred overnight at room temperature and concentrated and the residue was dissolved in CH₂Cl₂ (60 mL); this solution was washed successively with 10% aqueous KHSO₄ (50 mL), 1 M HCl (50 mL), saturated aqueous NaHCO₃ (50 mL) and saturated aqueous NaCl (50 mL). The washings were reextracted with CH₂Cl₂ (2 × 40 mL), and the combined organic solutions were dried and concentrated. Flash chromatography (6:4, 250 mL, 1:1, 200 mL, cyclohexanes-EtOAc) of the residue gave the alcohol **3** (412 mg, 87%), which crystallized on standing.

Method B. A stirred solution of 1,6-anhydro-2-azido- β -Dglucopyranoside⁷ (4; 100 mg, 0.534 mmol) in anhydrous CH₂Cl₂ (30 mL) containing pyridine (0.3 mL) and activated 4 Å molecular sieves (0.5 g) was cooled to -18 °C under N₂, and chloroacetyl chloride (50μ L, 0.62 mmol) was added. After the mixture was stirred at -17 °C for 1.5 h, benzoyl chloride (120 μ L, 1.0 mmol) was added and the reaction mixture was stirred at room temperature for 30 min. Anhydrous pyridine (3 mL), DMAP (50 mg, 0.4 mmol), and benzoyl chloride (250 μ L, 2.1 mmol) were added and the mixture was stirred overnight at room temperature. Methanol (1 mL) was added, solvents were removed in vacuo, and a solution of the residue in CH₂Cl₂ (15 mL) was washed with 1 M HCl (20 mL) and saturated aqueous NaHCO₃ (20 mL). The washings were reextracted with CH₂Cl₂ $(3 \times 15 \text{ mL})$, and the combined organic extracts were dried and concentrated. The residual oil was dissolved in a mixture of pyridine (13 mL) and EtOH (3 mL), thiourea (56 mg, 0.73 mmol) was added, and the reaction mixture was stirred overnight at room temperature and worked up as described above for the preparation of 3 using method A. Chromatography (8:2, then 7:3, and finally 6:4 cyclohexanes-EtOAc) gave first the dibenzoate 8 (33 mg, 15%), which crystallized on standing, and then the alcohol 3 (74.7 mg, 48%). Alternatively, the alcohol 3, which crystallized on standing, was obtained pure by filtration from 1:1 cyclohexanes-EtOAc.

Analytical Data for 3. Mp: 143–145 °C. $[\alpha]^{20}{}_{D} = +24 (c$

Table 1. Selective Glycosylation of Diol 4 with the Trichloroacetimidate 9

entry	temp (°C)	concn of 4 (mg/mL)	amt of donor 9 (equiv)	amt of TMSOTf (equiv)	yield of 11 (%)	yield of 12 (%)
1	-70	10	1	0.09	24	11
2	$-70 \rightarrow \text{room temp}$	3.3	$1^{a} + 0.2^{b}$	0.09	35	11
3	room temp	3.3	1.2^{b}	3 imes 0.09	50	6
4	room temp	3.3	1.5^{b}	4×0.09	47	7

^a Dropwise at -70 °C. ^b Dropwise at room temperature.

Figure 2. Sections (3.0-4.1 ppm) of the ¹H NMR spectra of disaccharides **11** (A) and **10** (B).

^{*a*} Legend: (a) H_2 , Pd/C; (b) Cl_3CCH_2OCOCl ; (c) $CF_3CO_2H-Ac_2O$; (d) HBr-AcOH.

0.9, CH₂Cl₂). ¹H NMR: δ 2.90 (d, 1 H, $J_{OH,4} = 10$ Hz, OH), 3.65 (bs, 1 H, H-2), 3.79 (bd, 1 H, H-4), 3.93 (dd, 1 H, $J_{\ell,6} = 7.5$ Hz, $J_{\ell,5} = 6$ Hz, H-6), 4.27 (d, 1 H, H-6'), 4.67 (bd, 1 H, H-5), 5.16 (m, 1 H, H-3), 5.52 (bs, 1 H, H-1), 7.51, 7.63, 8.04 (3 m, 5 H, aromatics). Anal. Calcd for C₁₃H₁₃N₃O₅: C, 53.6; H, 4.5; N, 14.4. Found: C, 53.0; H, 4.5; N, 13.9.

Analytical Data for 8. Mp: 108–109 °C. $[\alpha]^{20}{}_{D} = -89$ (*c* 1.0, CH₂Cl₂). ¹H NMR: δ 3.47 (bs, 1 H, H-2), 3.97 (dd, 1 H, $J_{6.6} = 7.5$ Hz, $J_{6.5} = 5.5$ Hz, H-6), 4.37 (d, 1 H, H-6'), 4.87 (bd, 1 H, H-5), 5.11 (bs, 1 H, H-4), 5.37 (m, 1 H, H-3), 5.66 (bs, 1 H, H-1), 7.49, 7.62, 8.04, 8.18 (4 m, 10 H, aromatics). Anal. Calcd for C₂₀H₁₇N₃O₆: C, 60.7; H, 4.3; N, 10.6. Found: C, 60.2; H, 4.3; N, 10.2.

1,6-Anhydro-2-azido-3,4-di-*O*-chloroacetyl-2-deoxy-β-Dglucopyranose (5), 1,6-Anhydro-2-azido-4-*O*-chloroacetyl-

^a Legend: (a) NaH; (b) **15**.

2-deoxy- β -**D**-glucopyranose (6), and 1,6-Anhydro-2-azido-**3-***O*-chloroacetyl-2-deoxy- β -D-glucopyranose (7). A stirred solution of the diol **4** (100 mg, 0.534 mmol) in anhydrous CH₂-Cl₂ (30 mL) containing pyridine (0.3 mL) was cooled to -18°C under N₂, and chloroacetyl chloride (40 μ L, 0.503 mmol) was added. The reaction mixture was stirred between -18and -10 °C for 2 h, during which time more chloride was added portionwise (2 × 10 μ L, 0.251 mmol). Methanol was added, solvents were evaporated, and residual pyridine was coevaporated with toluene. Chromatography (gradient 8:2 to 0:1 cyclohexanes–EtOAc) gave first the dichloroacetate **5** (16.6 mg, 7%), followed by the monochloroacetate **6** (59.7 mg, 43%) and then the chloroacetate **7** (17 mg, 12%), and finally the unreacted starting diol **4** (12 mg, 12%).

Analytical Data for 5. $[\alpha]^{20}{}_{D} = +30 \ (c \ 1.1, \ CH_2Cl_2).$ ¹H NMR: $\delta 3.24 \ (bs, 1 \ H, \ H^{-2}), 3.87 \ (dd, 1 \ H, \ J_{6.6'} = 8 \ Hz, \ J_{6.5} = 5.5 \ Hz, \ H^{-6}), 4.12 \ (s, 2 \ H, \ ClCH_2CO), 4.18 \ (d, 1 \ H, \ H^{-6}), 4.21 \ (s, 2 \ H, \ ClCH_2CO), 4.72 \ (bd, 1 \ H, \ H^{-5}), 4.80 \ (bs, 1 \ H, \ H^{-4}), 5.00 \ (bs, 1 \ H, \ H^{-3}), 5.57 \ (bs, 1 \ H, \ H^{-1}). \ Anal. \ Calcd for C_{10}H_{11}N_3ClO_{6:} \ C, \ 35.3; \ H, \ 3.3; \ N, \ 12.3. \ Found: \ C, \ 35.3; \ H, \ 3.3; \ N, \ 12.1.$

Analytical Data for 6. $[\alpha]^{20}_D = -6$ (*c* 1.1, CH₂Cl₂). ¹H NMR: δ 3.28 (bs, 1 H, H-2), 3.82 (dd, 1 H, $J_{6,6} = 7.5$ Hz, $J_{6,5} = 5.5$ Hz, H-6), 3.92 (bs, 1 H, H-3), 4.20 (s, 2 H, ClCH₂CO), 4.22 (d, 1 H, H-6'), 4.66 (bd, 1 H, H-5), 4.77 (bs, 1 H, H-4), 5.57 (bs, 1 H, H-1). Anal. Calcd for C₈H₁₀N₃ClO₅: C, 36.4; H, 3.8; N, 15.9. Found: C, 36.3; H, 4.0; N, 15.7.

Analytical Data for 7. $[\alpha]^{20}_{D} = -3$ (*c* 1.0, CH₂Cl₂). ¹H NMR: δ 3.51 (bs, 1 H, H-2), 3.67 (bs, 1 H, H-4), 3.84 (dd, 1 H, $J_{6,6} = 7.5$ Hz, $J_{6,5} = 6$ Hz, H-6), 4.12 (s, 2 H, ClCH₂CO), 4.14 (d, 1 H, H-6'), 4.61 (bd, 1 H, H-5), 4.93 (m, 1 H, H-3) 5.47 (bs, 1 H, H-1). Anal. Calcd for C₈H₁₀N₃ClO₅: C, 36.4; H, 3.8; N, 15.9. Found: C, 36.4; H, 4.0; N, 15.6.

1,6-Anhydro-2-azido-3-*O*-**benzoyl-4**-*O*-**(3,4,6-tri-***O*-**benzoyl-2-deoxy-2-phthalimido-**β-**D**-**glucopyranosyl)-2-deoxy**β-**D**-**glucopyranose (10). Method A.** A mixture of the acceptor **3** (567 mg, 1.95 mmol) and the trichloroacetimidate⁸ **9** (1.83 g, 2.38 mmol) in anhydrous CH₂Cl₂ (50 mL) containing 4 Å activated molecular sieves (5 g) was stirred under N₂ for 1 h at room temperature and cooled to -78 °C. TMSOTf (30 μ L, 0.17 mmol) was added, and the stirred reaction mixture was allowed to reach +10 °C in 7 h under N₂. Triethylamine (50 μ L, 0.36 mmol) was added, and the solids were filtered off and washed with CH₂Cl₂ (70 mL). The combined filtrate and washings were washed successively with H₂O (100 mL), 1 M HCl (100 mL), saturated aqueous NaHCO₃ (100 mL), and saturated aqueous NaCl (100 mL). The aqueous washings were reextracted with CH₂Cl₂ (2 × 100 mL), and the combined organic phases were dried and concentrated. Flash chromatography (100:5, 1 L; 100:7, 0.5 L; 100:8, 0.5 L; toluene–EtOAc) gave the disaccharide **10** (1.33 g, 76%). Impure fractions containing mostly **10** were pooled, concentrated, and submitted to chromatography to give more disaccharide **10** (164 mg, 9%). Since the disaccharide thus obtained was contaminated with trichloroacetamide, an analytical sample was purified by gel permeation and crystallized on standing.

Method B. Benzoyl chloride $(83 \ \mu L, 0.71 \ \text{mmol})$ was added to a solution of the disaccharide **11** (100.3 mg, 0.127 mmol) in anhydrous CH₂Cl₂ (9 mL) containing anhydrous pyridine (1 mL) and DMAP (10 mg). The reaction mixture was stirred at room temperature for 3 days and worked up as described for the preparation of **3** and **8** using method B. Chromatography (9:1 and then 5:1 toluene–EtOAc) gave the disaccharide **10** (101.8 mg, 90%).

Analytical Data for 10. Mp: 116–118 °C. $[\alpha]^{20}{}_{D} = +26$ (*c* 1.0, CH₂Cl₂). ¹H NMR: δ 3.19 (bs, 1 H, H-2*B*), 3.73 (dd, 1 H, $J_{6,6} = 7.5$ Hz, $J_{6,5} = 6$ Hz, H-6*B*), 3.82 (bs, 1 H, H-4*B*), 4.01 (bd, 1 H, H-6'*B*), 4.48 (m, 2 H, H-5*A* and H-5*B*), 4.56 (dd, 1 H, $J_{6,6} = 12.5$ Hz, $J_{6,5} = 6$ Hz, H-6*A*), 4.71 (dd, 1 H, $J_{6,5} = 3$ Hz, H-6'*A*), 4.75 (dd, 1 H, $J_{2,1} = 8.5$ Hz, $J_{2,3} = 10.5$ Hz, H-2*A*), 5.40 (bs, 1 H, H-3*B*), 5.63 (bs, 1 H, H-1*B*), 5.74 (t, 1 H, $J_{3,4} = 10$ Hz, H-3*A*), 7.20–8.05 (m, 24 H, aromatics). Anal. Calcd for C₄₈H₃₈N₄O₁₄: C, 64.4; H, 4.3; N, 6.3. Found: C, 64.3; H, 4.3; N, 5.9.

1,6-Anhydro-2-azido-4-*O*-(3,4,6-tri-*O*-benzoyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-2-deoxy-β-D-glucopyranose (11) and 1,6-Anhydro-2-azido-3,4-di-O-(3,4,6-tri-O-benzoyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-2deoxy- β -D-glucopyranose (12). A suspension of the diol 4 (100 mg, 0.53 mmol) in anhydrous CH₂Cl₂ (30 mL) containing 4 Å activated molecular sieves (3 g) was stirred under N₂ for 1 h at room temperature. A solution of TMSOTf in CH₂Cl₂ (0.16 M, 100 μ L, 0.016 mmol) followed by a solution of the trichloroacetimidate⁸ 9 (41 mg, 0.054 mmol) in CH₂Cl₂ (100 μ L) were added, and the reaction was monitored by TLC (3:1 toluene–EtOAc; $R_f(11)$ 0.16, $R_f(12)$ 0.37). More TMSOTf in CH_2Cl_2 (0.16 M, 3 \times 100 $\mu L,$ 0.048 mmol) and more donor $\boldsymbol{9}$ $(14 \times 41 \text{ mg}, 0.75 \text{ mmol})$ in CH₂Cl₂ (100 μ L) were added portionwise over 3 h, and the stirred reaction mixture was then left for 18 h under N_2 at room temperature. Triethylamine (18 μ L, 0.13 mmol) was added, and the molecular sieves were decanted and washed with CH_2Cl_2 (10 mL). The combined supernatant and washings were concentrated, and chromatography (9:1 followed by 5:1 and 1:1 toluene-EtOAc) gave the trisaccharide 12 contaminated with trichloroacetamide, which was removed by gel permeation chromatography (55 mg, 7%), and the disaccharide 11 (200 mg, 47%). For analytical purposes an aliquot of 11 was also submitted to gel permeation while the remaining disaccharide was used directly in the benzoylation step.

Analytical Data for 11. White powder. Mp: 103-105 °C. $[\alpha]^{20}_{D} = +17$ (*c* 1.0, CH₂Cl₂). ¹H NMR: δ 3.16 (bd, 1 H, $J_{2,3} = 5$ Hz, H-2*B*), 3.36 (bd, 1 H, $J_{OH,3} = 4.5$ Hz, OH-3*B*), 3.59 (dd, 1 H, $J_{6,6} = 7$ Hz, $J_{6,5} = 5.5$ Hz, H-6*B*), 3.62 (bd, 1 H, $J_{4,3} = 4.5$ Hz, H-4*B*), 3.83 (d, 1 H, H-6'*B*), 3.87 (m, 1 H, H-3*B*), 4.30 (m, 1 H, H-5*A*), 4.32 (bd, 1 H, H-5*B*), 4.45 (dd, 1 H, $J_{6,6} = 12.5$ Hz, $H_{2,6,5} = 6$ Hz, H-6*A*), 4.66 (dd, 1 H, $J_{2,1} = 8.5$ Hz, $J_{2,3} = 11$ Hz, H-2*A*), 4.82 (dd, 1 H, $J_{6,5} = 3$ Hz, H-6'*A*), 5.25 (bs, 1 H, H-1*B*), 5.70 (t, 1 H, $J_{4,3} + 4.5 = 19.5$ Hz, H-3*A*), 7.20–8.05 (m, 19 H, aromatics). Anal. Calcd for C₄₁H₃₄N₄O₁₃: C, 62.3; H, 4.3; N, 7.1. Found: C, 62.3; H, 4.4; N, 6.9.

Analytical Data for 12. White powder. Mp: 145–147 °C. $[\alpha]^{20}_{D} = +43$ (*c* 1.0, CH₂Cl₂). ¹H NMR: δ 2.72 (bs, 1 H, H-2*B*), 3.30 (dd, 1 H, $J_{6.6} = 7$ Hz, $J_{6.5} = 6$ Hz, H-6*B*), 3.77 (bd, 1 H,

H-6'*B*), 3.97 (bs, 1 H, H-4*B*), 4.23 (bs, 1 H, H-3*B*), 4.27 (m, 2 H, H-5*A*, H-5*A*'), 4.36 (bd, 1 H, H-5*B*), 4.45 (m, 3 H, H-6*A*, H-2*A*', H-6*A*'), 4.60 (dd, 1 H, $J_{2,1} = 8.5$ Hz, $J_{2,3} = 11$ Hz, H-2*A*), 4.77 (dd, 1 H, $J_{d,6} = 12.5$ Hz, $J_{d,5} = 3$ Hz, H-6'*A*), 4.80 (dd, 1 H, $J_{d,6} = 12.5$ Hz, $J_{d,5} = 3$ Hz, H-6'*A*), 4.80 (dd, 1 H, $J_{d,6} = 12.5$ Hz, $J_{d,5} = 2.5$ Hz, H-6'*A*'), 5.03 (bs, 1 H, H-1*B*), 5.63 (m, 3 H, H-4*A*, H-1*A*', H-4*A*'), 5.92 (d, 1 H, H-1*A*), 6.16 (dd, 1 H, $J_{3,4} = 11$ Hz, H-3*A*), 6.24 (dd, 1 H, $J_{3,2} = 9.5$ Hz, $J_{3,4} = 11$ Hz, H-3*A*), 7.22–8.15 (m, 38 H, aromatics). Anal. Calcd for C₇₆H₅₉N₅O₂₂: C, 65.5; H, 4.3; N, 5.0. Found: C, 65.7; H, 4.4; N, 5.0.

1,6-Anhydro-4-O-(3,4,6-tri-O-benzoyl-2-deoxy-2phthalimido-β-D-glucopyranosyl)-2-deoxy-2-(((trichloroethoxy)carbonyl)amino)-β-D-glucopyranose (13). Palladium-on-carbon catalyst (10%-on-C, 50% in H₂O, 100 mg) was added to a solution of the azide 10 (88 mg, 0.098 mmol) in MeOH (10 mL), and the reaction mixture was stirred under H₂ at room temperature for 4 h. The catalyst was filtered off and rinsed with MeOH (3 \times 4 mL), and the combined filtrate and washings were concentrated. Residual traces of water and MeOH were coevaporated with anhydrous toluene (4×10 mL), and the residual white solid was dissolved in anhydrous CH_2Cl_2 (10 mL) and treated with NEt₃ (150 μ L, 1.08 mmol) and trichloroethyl chloroformate (20 μ L, 0.15 mmol). The reaction mixture was stirred under N₂ at room temperature for 0.5 h, and more trichloroethyl chloroformate (14 μ L, 0.1 mmol) was added. The reaction was left to proceed for 18 h at room temperature and quenched by addition of MeOH (50 μ L). The solution was diluted with CH₂Cl₂ (15 mL) and washed successively with 1 M HCl (10 mL), saturated aqueous NaHCO₃ (15 mL), and brine (15 mL). The aqueous washings were reextracted with CH_2Cl_2 (3 × 10 mL), and the combined organic phases were dried and concentrated. Chromatography of the residue (64:36 hexanes-EtOAc) gave the carbamate 13 (62 mg, 60%) as a white powder. Mp: 125-127 °C. $[\alpha]^{20}_{D} =$ -11 (c 1.05, CH₂Cl₂). ¹H NMR: δ 3.70 (dd, 1 H, $J_{6,6}$ = 8 Hz, $J_{6.5} = 6$ Hz, H-6B), 3.75 (bs, 1 H, H-4B), 3.86 (bd, 1 H, $J_{2.NH} =$ 9.5 Hz, H-2B), 4.00 (bd, 1 H, H-6'B), 4.35 (bd, 1 H, H-5B), 4.47 (dd, 1 H, $J_{6,6} = 12$ Hz, $J_{6,5} = 7.5$ Hz, H-6A), 4.54 (m, 1 H, H-5A), 4.63 (d, 1 H, J = 12 Hz, OCHHCCl₃), 4.70 (dd, 1 H, $J_{6,5} = 2$ Hz, H-6'A), 4.75 (dd, 1 H, $J_{2,1} = 8.5$ Hz, $J_{2,3} = 11$ Hz, H-2A), 4.85 (d, 1 H, OCHHCCl₃), 5.38 (bs, 1 H, H-1B), 5.57 (bs, 1 H, H-3B), 5.66 (t, 1 H, $J_{4,3 + 4,5} = 19$ Hz, H-4A), 5.69 (d, 1 H, NHB), 6.04 (d, 1 H, H-1A), 6.29 (dd, 1 H, $J_{3,4} = 9$ Hz, H-3*A*), 7.11–8.00 (m, 24 H, aromatics). Anal. Calcd for C₅₁H₄₁-Cl₃N₂O₁₆: C, 58.7; H, 4.0; N, 2.7. Found: C, 58.8; H, 4.2; N,

1,6-Di-O-acetyl-4-O-(3,4,6-tri-O-benzoyl-2-deoxy-2phthalimido-β-D-glucopyranosyl)-2-deoxy-2-(((trichloroethoxy)carbonyl)amino)- α , β -D-glucopyranose (14). The anhydro compound 13 (62 mg, 0.059 mmol) was dissolved in 9:1 Ac₂O-CF₃CO₂H (20 mL), and the solution was stirred for 18 h at room temperature. Solvents were evaporated, and residual traces of acid were coevaporated with toluene. Chromatography (6:4 hexanes-EtOAc) of the dry residue gave the anomeric mixture of diacetate 14 (62 mg, 91%). ¹H NMR in CDCl₃ showed an α : β ratio of 75:25. ¹H NMR for the α -anomer: δ 1.83, 2.18 (2 s, 2 × 3 H, CH₃CO), 3.68 (dd, 1 H, $J_{6,6}$ = 12 Hz, $J_{6.5} = 3$ Hz, H-6B), 3.76 (m, 1 H, H-5A), 3.87-4.07 (m, 2 H, H-6A and H-5B), 4.12-4.32 (m, 4 H, H-6'A, H-2B, H-4B and H-6'B), 4.43 (d, 1 H, J = 12 Hz, OCHHCCl₃), 4.50 (dd, 1 H, $J_{2,1} = 8.5$ Hz, $J_{2,3} = 11$ Hz, H-2A), 4.64 (d, 1 H, OCHHCCl₃), 5.24 (d, 1 H, $J_{NH,2} = 9.5$ Hz, NHB), 5.54 (t, 1 H, $J_{4,3+4,5} = 19.5$ Hz, H-4*A*), 5.66 (dd, 1 H, $J_{3,2 \text{ or } 3,4} = 9$ Hz, $J_{3,2 \text{ or } 3,4} = 11$ Hz, H-3*B*), 5.77 (d, 1 H, H-1*A*), 6.11 (dd, 1 H, H-3*A*), 6.15 (d, 1 H, $J_{1,2} = 3$ Hz, H-1B), 7.20-8.20 (m, 24 H, aromatics).

1,6-Di-*O*-acetyl-4-*O*-(**3,4,6-tri-***O*-benzoyl-2-deoxy-2phthalimido-β-D-glucopyranosyl)-2-deoxy-2-(((trichloroethoxy)carbonyl)amino)-α-D-glucopyranosyl Bromide (**15**). A solution of HBr in AcOH (33%, 800 μ L) was added to a solution of the diacetate **14** (49 mg, 0.043 mmol) in anhydrous CH₂Cl₂ (2 mL). The reaction mixture was stirred under N₂ for 3 h at room temperature, and solvents were evaporated. Residual acid was coevaporated with toluene (4 × 8 mL), and the residue was dissolved in CH₂Cl₂ (8 mL); this solution was rapidly washed with aqueous saturated NaHCO₃ (8 mL) and brine (8 mL). The aqueous washings were reextracted with CH₂Cl₂ (2 × 8 mL) and the combined organic phases were dried and concentrated. Residual traces of water and solvents were coevaporated successively with anhydrous toluene and anhydrous CH₂Cl₂, and the bromide, whose purity was controlled by ¹H NMR (49 mg, 98%), was kept at -20 °C until use. ¹H NMR: δ 1.86 (s, 3 H, CH₃CO), 3.81 (dd, 1 H, $J_{6,6} = 12.5$ Hz, $J_{6,5} = 3$ Hz, H-6*B*), 3.86 (m, 1 H, H-5*A*), 4.02 (dd, 1 H, $J_{6,6} = 12.5$ Hz, $J_{6,5} = 4.5$ Hz, H-6*A*), 4.12-4.28 (m, 4 H, H-6'A, H-2*B*, H-4*B*, and H-5*B*), 4.42 (bd, 1 H, H-6'*B*), 4.47 (d, 1 H, J = 12 Hz, OC/HCCl₃), 4.51 (dd, 1 H, $J_{2,1} = 8$ Hz, $J_{2,3} = 11$ Hz, H-2*A*), 4.65 (d, 1 H, OC/HCCl₃), 5.40 (d, 1 H, $J_{NH,2} = 9$ Hz, NH*B*), 5.54 (t, 1 H, $J_{3,2 \text{ or } 3.4} = 8.5$ Hz, $J_{3,2 \text{ or } 3.4} = 10$ Hz, H-3*A*), 6.42 (d, 1 H, $J_{1,2} = 3.5$ Hz, H-1*B*), 7.20-8.20 (m, 24 H, aromatics).

2-Acetamido-1,6-di-O-acetyl-3-O-benzoyl-2-deoxy-4-S-(6-O-acetyl-3-O-benzoyl-2-deoxy-4-O-(3,4,6-tri-O-benzoyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-2-(((trichloroethoxy)carbonyl)amino)-β-D-glucopyranosyl)-2-(((trichloroethoxy)carbonyl)amino)-4-thio-α-D**glucopyranose (17).** A cold solution (0 °C) of the known¹ thiol 16 (19.9 mg, 0.047 mmol) in anhydrous O₂-free THF (3.5 mL) was transferred under Ar at 0 °C to a stirred suspension of NaH (2 mg, 55% in oil, 0.046 mmol) in THF (0.6 mL). The flask that contained the thiol was rinsed with aliquots of THF (0.5 and 0.2 mL) which were added under Ar to the NaH suspension. The reaction mixture was stirred at 0 °C under Ar until gas evolution had ceased, then, it was warmed to room temperature and transferred under Ar to a flask containing the bromide 15 (45.7 mg, 0.039 mmol). The flask was rinsed with aliquots of THF (2×0.4 mL), which were added to the bromide solution. The reaction was left to proceed under Ar

at room temperature for 2.5 h; it was quenched by addition of AcOH (30 µL), and solvents were removed in vacuo. Chromatography (3:7, toluene-EtOAc) of the residue gave the thiotrisaccharide 17 (29.2 mg, 49%) contaminated with 10% of an impurity that could not be removed even after repeated silica gel chromatography. The thiotrisaccharide was obtained pure upon LH20 gel permeation chromatography (18 mg, 30%) as a colorless glass. $[\alpha]^{20}_{D} = +12$ (*c* 1.0, CH_2Cl_2). ¹H NMR: δ 1.81, 1.85, 2.06, 2.08 (4 s, 4 \times 3 H, CH₃CO), 3.18 (t, 1H, J_{4,3 +} 4,5 = 22 Hz, H4*C*), 3.62 (d, 1 H, *J* = 12.5 Hz, OC*H*HCCl₃), 3.68 (m, 2H, H-5B and H-6A, or H-6B, or H-6C), 3.80-4.00 (m, 4H, H-5A, H-2B, H-4B, and H-6A or H-6B or H-6'A or H-6'B or H-6'C), 4.21-4.31 (m, 4H, H-5C, and H-6A or H-6B or H-6C, and H-6'A and H-6'B, or H-6'A and H-6'C, or H-6'B and H-6'C), 4.47-4.56 (m, 2H, H-5A, and H-6'A or H-6'B or H-6'C), 4.66 (d, 1 H, OCHHCCl₃),), 4.74 (dt, 1 H, $J_{2,1} = 3.5$ Hz, $J_{2,3 + 2,NH} =$ 20.5 Hz, H-2*C*), 4.93 (d, 1 H, *J*_{1,2} = 10 Hz, H-1*B*), 5.36 (d, 1 H, $J_{NH,2} = 10$ Hz, NHB), 5.49 (t, 1 H, $J_{3,2 + 3,4} = 21.5$ Hz, H-3C), 5.59 (t, 2 H, $J_{4,3 + 4,5} \approx J_{3,2 + 3,4} = 19.5$ Hz, H-4A and H-3B), 5.67 (d, 1 H, *J*_{NH,2} = 9.5 Hz, NH*C*), 5.76 (d, 1 H, *J*_{1,2} = 8.5 Hz, H-1A), 6.10 (dd, 1 H, $J_{3,2 \text{ or } 3,4} = 9.5$ Hz, $J_{3,2 \text{ or } 3,4} = 10.5$ Hz, H-3*A*), 6.20 (d, 1 H, $J_{1,2} = 3$ Hz, H-1*C*), 7.20–8.20 (m, 29 H, aromatics). ¹³C NMR: $\delta_{\rm C}$ 20.3, 20.8, and 20.9 (3 × *C*H₃COO), 23.0 (CH₃CON), 45.6 (C-4C), 51.4, 55.1, and 55.2 (C-2A, C-2B, and C-2C), 62.4 and 63.0 (C-6A, C-6B, and C-6C), 68.0, 69.5, 70.8, 71.1, 72.0, 74.2, 75.9, and 76.6 (C-3A, C-4A, C-5A, C-3B, C-4B, C-5B, C-3C, and C-5C), 82.0 (C-1B), 91.6 (C-1C), 97.8 (C-1A). FABMS: m/z 1512.4 [M⁺ + 1]. Anal. Calcd for C₇₂H₆₆-Cl₃N₃O₂₅S: C, 57.2; H, 4.4; N, 2.8. Found: C, 57.0; H, 4.6; N, 2.7.

JO980735A